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Classical trajectory calculations for a triatomic, complex forming system are used to assess the effectivity
(correctness at given computational expense) of new, symplectic integrators of sixth and fourth orders (S6
and S4) compared to a traditional predictor-corrector scheme of sixth order (G). With respect to energy
conservation and positional error, S6 is two to three orders better than G, while S4 is no improvement.
However, comparison with quadruple precision calculations shows that even with S6 the correct computation
in double precision arithmetic is limited to trajectory lifetimes of about 25 typical molecular vibrations.
Moreover, in contrast to common assumptions, even energy conservation to 10-12 does not guarantee that the
trajectory is correct, or even that it reaches the correct reaction channel.

1. Introduction

The computation of classical trajectories1,2 simulating mo-
lecular scattering on a given potential is sometimes regarded
as a trivial problem. This may be so for the simulation of direct
collisions, where today we have enough computer power to run
millions of trajectories in a few hours, especially if we take
their correctness for granted if only energy conservation holds
to 10-6. But even for direct collisions, situations exist where
the evaluation of one integration step is so expensive that one
is grateful for any improvement in the numerical integration
routine. This is, e.g., the case in AIMD (ab initio molecular
dynamics) (see ref 3; cf. also ref 4], where at each integration
step the potential derivative is computed ab initio.

The situation is very different if we want to simulate long-
lived, complex collisions or unimolecular decay. Here, the
trajectories are necessarily long (in terms of a typical vibrational
period of the system), and the question of how accurate they
are is usually just repressed. Correctness is generally assumed
if energy is conserved, and few people believe or know that a
trajectory can be completely wrong, e.g. emerge as reactive
instead of nonreactive, even if energy conservation is better than
10-12.

The invention of a set of new symplectic integrators in our
group by Teloy5 was taken as an opportunity to investigate the
accuracy of long-lived trajectories such as those we have
computed for many years. “Symplectic”, or “canonical”,
integrators6,7 are integrating algorithms, for which by construc-
tion (ideally, i.e., neglecting rounding errors) each integration
step is a symplectic, or canonical, transform. Since the
dynamics of Hamiltonian systems, which include molecular
scattering, is also symplectic, one expects that they are well-
adapted to the integration of such systems. Among other things
symplectic dynamics conserves several quantities such as
energy, total angular momentum, and phase space volume. With
some modifications this holds also (ideally) for numerical
symplectic integration. In addition, symplectic integrators may
be (and Teloy’s are) symmetric under time-reversal.

The Verlet “leapfrog” algorithm popular in molecular dynam-
ics is a symplectic integrator of second order. Higher order
symplectic routines are not yet widespread in classical trajectory

work,8,9 though their usefulness has been assessed.10 However,
algorithms of sixth and higher order11-13 are still rare.

In this, necessarily limited, study we took one symplectic
integrator of sixth order, and one of fourth order (abbreviated
S6 and S4 in this paper), and compared them with a sixth order
predictor-corrector integrator by Gear,14 which we have used
for many years. The latter (abbreviated G here) had been
selected 17 years ago on the basis of a comparison16 with 7
other integrating routines popular at that time (including Runge-
Kutta-Lawson (order 5), Runge-Kutta-Fehlberg (6), Rosen-
brock (4), a predictor-corrector routine by Hamming (5), and
EPISODE (variable order)), which were applied to essentially
the same type of problem as now. At the suggestion of one
reviewer, we also did a few runs with an integrator from the
recent literature, i.e., the sixth order nine-step integrator recom-
mended by McLachlan13 (abbreviated ML).

The system which we integrate is similar to the scattering of
H+ from D2; i.e., we use the DIM potential energy surface for
H3

+,17 but the massesma ) mc ≈ 1.73 u andmb ≈ 1.56 u. The
system dynamics is chaotic (the usual mixture of regular and
chaotic phase space regions), and there are numerous trajectories
which are trapped in the potential for many (tens or hundreds
or more, depending on energy) vibrational periods.18,19 Since
our aim was to look into the limits of correct integration, we
did not integrate a microcanonical ensemble of trajectories but
selected 1000 trajectories of different lifetimes from such an
ensemble. These were run with different step sizes for a
sufficiently large time, fixed for each trajectory in order to allow
the comparison not only of conserved quantities (energy, angular
momentum) but also of the positions of the final points in phase
space. We discarded the alternative of computing and compar-
ing probability distributions of simulated “real” reactions,
because in this case significant differences can only be obtained
with much larger expense.

Since there is no analytic way to know the end points exactly,
an assessment of their accuracy is not easy and never completely
certain. We used quadruple precision arithmetic20 with very
small integration steps to define what we nominally call the
“correct” trajectories. In addition, one must also define what
one calls a “better” integrating routine. We used the number
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of substeps, i.e., calls to the potential derivatives (which
dominate the expense of the calculation), to define a better
integrator as one which needs less substeps to compute a given
fraction of correct trajectories.

As a measure for the length, and that implies the complexity,
of a trajectory we use the numberM of “minimum exchanges”
(MEs),21 defined as the number of changes of the identity of
the shortest of the three interatomic distances (RAB, RBC, RCA)
in the collision complex. As a dimensionless quantityM is
invariant with respect to the scaling of nuclear masses, or
potential parameters (well depth, equilibrium distance). Roughly
speaking, two MEs correspond to one typical molecular vibra-
tion in the complex. ForM > 3 this number is nearly
proportional to the lifetime of the complex. In our example
one ME corresponds to about 12.5 fs.

The result of this study is that integrator S6, but not S4, is
definitely better than G. In addition, our computations show
the incorrectness of some common folklore about classical
trajectory computations: Neither good energy conservation nor
back integrability aresufficient to ensure a correct trajectory,
and even with a good integrating routine (which S6 certainly
is) thecorrect integration of complex trajectories in a typical
triatomic molecular potential well is limited to about 40 MEs
(or 20 vibrational periods) in double precision (DP), and perhaps
80 in quadruple precision (QP).

The concept of the paper is as follows: Section II describes
the model, section III the integrators and section IV the
calculations, and section V presents the detailed results and
discusses them.

II. The Model

For this study we used the DIM potential for H3
+, which we

had used in several earlier studies (see refs 18, 19, and 21, and
references cited therein). Its exact shape is irrelevant in this
study, and from older calculations22 we know that we could as
well have used a triple Morse ansatz. If we measure the duration
of a trajectory in units of MEs, energies in units of the well
depth, and distances in units of the equilibrium distance of the
triatomic well,all classical calculations for the same potential
shape are equivalent. The only variable which is not automati-
cally scaled in this way is momentum, which we need in the
definition of positional errors in phase space. Here we use
internal units which ensure that the distance in momentum space
and that in position space contribute in a balanced manner to
the phase space distance.

The calculation was done with the following physical
parameters: Massesma ) mc ) 1.7353 u andmb ) 1.5625 u;
3D well depth measured from the first dissociation level 4.924
eV; equilibrium distance of the equilateral complex, 0.9187 Å,
resulting in normal mode periods of the order of 25 fs. The
collision energy was 1.0 eV. The trajectory lengths in real time
units were between 140 and 1600 fs.

III. Integrators

Both symplectic integrators are explicit single-step ordinary
differential equation (ODE) solvers and belong to the class of
explicit partitioned Runge-Kutta methods in the language of
ref 6. S4 is related but not equal to example 8.1 in ref 6. In
the language of ref 13 both integrators belong to type S, i.e.,
are a composition of single symplectic steps. S6 was derived
by Teloy5 with methods similar to those of refs 11-13. Both
integrators can be used for any Hamiltonian system whose
Hamiltonian can be partitioned, i.e., written asH ) T(p) +
V(q). This holds for most coordinate systems in which one

would integrate trajectories. The right-hand sides of the
differential equations are defined as the vector components fpi

) -∂H/∂qi, fqi ) ∂H/∂pi, andh is the (full) time step. Then
one full step of S4 is given by the sequence of fractional substeps

where

So we have five substeps, each callingfp and fq once, plus
step 10, which can be combined with step 1 in a calculation of
a series of full steps.

Similarly, one full step of S6 is given by

where now the coefficients are no longer analytically known.
The numbers given here are exact to 20 digits:

From the sequence of steps and the coefficients it is obvious
that both symplectic integrators are explicitly time-reversible.
McLachlan’s integrator ML, defined in ref 13, is very similar
to S6 but with different coefficients.

The stability of the recursions 1 and 2 was determined by
applying it to the harmonic oscillator. The maximum stable
time step in units ofω, hω, is ≈1.552 for S4 and≈6.363 for
S6. This means that S6 allows time steps four times as large
as those of S4. The stability of S6 is also much better than
that of ML with hω < 2.507.

The Gear integrator, fully described in ref 14, does not
distinguish betweenq andp. It has a fifth order predictor and
a sixth order corrector. Since it is implicit, it is not self-starting,

do i ) 0, 2, 4, 6, 8

p ) p + ha(i)fp

q ) q + ha(i + 1)fq

end do

p ) p + ha(10)fp (1)

a(0) ) a(10) ) 1/2 a(1) ) a(9) ) -1/48

a(3) ) a(7) ) 3/8

a(2) ) -a(4) ) -a(6) ) a(8) ) 1/3 a(5) ) 7/24

do i ) 0, 2, 4, ..., 14, 16

q ) q + ha(i)fq

p ) p + ha(i + 1)fp

end do

q ) q + ha(18)fq (2)

a(0) ) a(18) ) +0.095 176 254 541 774 052 68
a(1) ) a(17) ) +0.666 296 893 997 707 801 34

a(2) ) a(16) ) -0.127 950 285 523 686 779 41
a(3) ) a(15) ) +0.024 618 900 952 105 087 13

a(4) ) a(14) ) +0.105 972 953 453 251 131 44
a(5) ) a(13) ) -0.410 725 533 617 951 132 32

a(6) ) a(12) ) +0.448 222 276 600 827 484 17
a(7) ) a(11) ) +0.657 729 262 050 913 177 69

a(8) ) a(10) ) -0.021 421 199 072 165 888 87
a(9) ) 2.0× -0.437 919 523 382 774 933 84
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and we start it with three Runge-Kutta steps. Normally we
have used it with variable step size, but for this study that feature
has been switched off. To keep the paper short, the formula is
not reproduced here. For the three free parameters of the
method we takea1 ) 1/2, a2 ) 1, andâ ) 9/56 as recommended
by Gear.

IV. Calculations

To start a trajectory, its twelve initial phase space coordinates,
and its necessary integration time, which were predetermined
in a test run, were read from a file. To compare the end points
obtained for different step sizes, each trajectory was finished
in all runs at exactly the same fixed time, which was taken as
a multiple of the largest time step used. All time steps were
reciprocal powers of 2.0 (in terms of the time unit of the
program, which is 10 fs) in order to prevent rounding errors of
the time variable. In the following we call a time step of 2-n

units, i.e., 2-n × 10 fs, a time step of sizen. For DP
computations we usedn ) 5...11 for S6, 6...12 for S4, and 7...13
for G. (That leads to a comparable range of substeps.) Larger
values produce increasing errors in DP. For comparison (and
not as a recommendation for production runs) we similarly used
QP with n ) 5...12 (and up to 14 in doubtful cases) for S6,
6...13 for S4, and 7...14 for G. During the integration the
number of MEs was monitored and together with the end point
saved in a file, from which the evaluations were done.

Classical trajectory calculations are generally performed for
a microcanonical ensemble of initial conditions, or sometimes
a more selective one with defined physical properties. In most
cases this leads to a predominance of short-lived trajectories.
In this study we were interested in the correctness of long
trajectories as a function of their length. Therefore, we took a
first, large microcanonical ensemble of scattering trajectories
only as the basis, from which we selected 1000 initial conditions
in sets of 10, which defined trajectories with (preliminary) ME
counts from 0 to 99. With this ensemble all further calculations
were done.

A nontrivial problem is the assessment of the final error in a
trajectory calculation, when the analytic solution of the dif-
ferential equations is not known. This question has two sides.
For a quantity which is conserved by the system’s dynamics it
is easy to compare its value at the end of the trajectory with
that at its beginning. This holds in our case for energy and
total angular momentum. (In principle, also the volume element
is conserved. But this is a differential quantity, and a test of
its conservation with finite approximations fails due to the
enormous distortions of volume elements by the exponential
divergence of adjacent trajectories.) In addition, the result of
back-integration can be checked easily, since also here the result
is known.

The situation is different if we ask for other properties of the
trajectory, e.g. its end position, or just the number of minimum
exchanges,M. (Note that a simple change ofM by one means
that the trajectory will generally end in a different reaction
channel!) For these kinds of properties the numeric accuracy
can only be assessed by comparison with a “more accurate”
numerical calculation. This is a logical circle, and the only
mathematically acceptable way out would be an interval
inclusion of the correct result computed on a computer with
correctly rounded interval arithmetic, as we have used in one
case.23 However, this is completely unfeasible here. Therefore,
we can only check whether some property practically converges
and assume that the seemingly converged property is correct.
For the rest of the paper we, therefore,definea correct trajectory

as one which gives the same number of MEs in three
computations with consecutively halved time steps. To check
the full range of DP arithmetic, we compared with a QP
calculation.20 In the case of doubt the QP calculation with S6
is taken as the correct one, and for all trajectories withM < 80
additional halving steps have been included to ensure apparent
convergence. A look into a table of the apparentM vs the step
size showed that it is highly improbable (<1%) that after three
equal values ofM this number changes again after the next
halving step. For all but 66 out of 1000 trajectories convergence
in the above sense was reached with a stepsize ofn ) 14.

V. Results

A. Accuracy of Conserved Quantities. In this case we
can take statistical averages over either all trajectories or only
those which we consider to be correct, but it turns out that the
result is practically the same. In both casesE and L are
computed at the beginning and end of the trajectory, and their
differences compared. Figure 1 shows the errors∆E as a
function of the “expense”, i.e., the number of substeps (calls to
the right side of the differential equation). Since every substep
means a call to the subroutine computing the potential deriva-
tives, the total computing time is generally dominated by this
number. The number of substeps per full integration step is 9,
5, and 2 for S6, S4, and G, respectively. The total number of
substeps for a substep size of 2-14 × 10 fs (the smallest useful
substep size in DP) was between 104 and 107. Figure 1 shows
that as long as rounding errors do not counteract, the improve-
ment of the energy error with decreasing stepsize is a power
law with powers-4, -5, and-6 for integrators S4, G, and
S6, respectively. One sees also that S6 is better than G with
respect to∆E by 2-3 orders of magnitude, which means that
it is more than two times faster for a fixed∆E. S4, due to its
low order, is an improvement over G only for very small step
sizes. The limitation inherent in the word size of DP is
obvious: a∆E better than 10-12 cannot be reached. To avoid

Figure 1. Average final energy deviation (eV) of all trajectories as a
function of the expense, i.e., the number of integration substeps per 10
fs. Integrators:O, G; +, S4;×, S6. The upper curves are for DP; the
lower ones for QP. The straight parts correspond to powers of-4,
-5, and-6 for S4, G, and S6, respectively.
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overcrowding the figure, five points calculated in DP with
integrator ML are not plotted. For step sizes where〈∆E〉 is
ruled by the truncation error (left part of plot) ML has about 30
times larger errors than S6.

We also computed∑(Ei - Ei-1)2 averaged over the respective
number of integration steps, which is an approximation to the
fluctuation of the energy about a local mean. The result is very
similar to Figure 1, and not shown.

Figure 2 shows the error,∆L, of the total angular momentum.
Here, an impressive improvement by many orders of magnitude
can be seen. For symplectic integration∆L is practically
constant; it remains (with a small linear increase) at the lowest
level determined by the word size.

One may wonder why this difference between energy and
angular momentum conservation exists, since the exact solution
of Hamilton’s equations conserves both properties exactly. The
reason is that symplectic integration with a finite step size ideally
(i.e. without rounding errors) conserves angular momentum
exactly. It also conserves energy, but not the energy of the
original HamiltonianH but of a slightly different one,Hh. The
difference betweenH andHh is O(hr), wherer is the order of
the method.6 This is what Figure 1 shows. Nevertheless, the
absence of energy drift is a big advantage of symplectic
integration, especially for long trajectories. We have verified
it for S4, and conversely for G in some cases (cf. also ref 10),
but do not show it to keep the paper short. As we will see
below, the limiting error for our problem is not the energy error,
which would allow much longer integration times, but the
position error, which makes too long trajectories meaningless.

Finally we back-integrated some of the trajectories. This has
often been done to assess the accuracy of trajectory calculations.
The argument runs as follows: if trajectories of some length
can be back-integrated within a certain error, they will also be
correct within that error to twice that length in the forward
direction. This may be a correct conclusion for integrators
which are not time-reversible. For S6 and S4, however, which

are time-reversible, we find that trajectories which are com-
pletely wrong, i.e., come out with wrongM and wrong reaction
channel, are still back-integrated very exactly. So, at least for
this class of integrators, back-integratbility is no proof at all
for correctness.

B. Nonconserved Quantities. We now turn to the non-
conserved quantitiesM and {q, p}. Remember thatM is a
measure for the length and complexity of the trajectories. As
we discussed before, the consistency ofM on halving the step
size was taken as a criterion for correctly computed trajectories.
In Table 1 we show for the three integrators the percentage of
correctly computed trajectories for different step sizes vs the
length of trajectories collected into groups ofM. The data show
again that S6 is better than G and that S4 is worse than both
others.

The error∆x of the end points in phase space is measured as
the Euclidean distance from the end point of the QP calculation
with the smallest step size (full step 2-12 × 10 fs for S6, 2-14

× 10 fs for G). This only makes sense for trajectories with the
correct number of MEs, to which our statistics is restricted. We
show the behavior of S6 and G in Figures 3 and 4. Again, S6
is orders of magnitude better than G, especially at high accuracy.
S4 (not shown) is again worse. Note that∆x is the absolute
error in our internal units, the relative error is about one-tenth
of the plotted numbers. The saturation of the errror at largeM
is due to the fact that all trajectories remain bounded in all but
one coordinate.

C. General Remarks. We close with some general results
derived from this study:

(1) The sixth order symplectic integrator of Teloy,5 called
S6 here, is definitely better (with respect to correctness at given
computing expense) than all others, which we have now or
earlier16 tested, and it has very good stability. We will use it
henceforth for our routine calculations.

(2) In a chaotic dynamical system like our model with
Lyapunov exponents of the order of 0.5 per passage through
the well (i.e., per ME), the correct computation of trajectories
appears to be limited in DP to those with less than about 40
MEs. (This may perhaps change a little if still better integrators
are found.) A number of 40 MEs corresponds to about 0.5 ps
for a system with a typical well depth of 5 eV, scattering energy
of 1.0 eV, and three masses of about 1 u. From our earlier
experience we can state that this result will depend very little
on the scattering energy, as long as this is less than about one-
third of the (absolute value of the) well depth. For higher
energies the lifetime of long-lived trajectories decreases fast,
and integration becomes easier. For other masses the cor-
respondence between the number of MEs and real time must
be scaled with the square root of the average mass. In QP the
limit for correct computation is more than 60 MEs, if one is
willing to spend the effort. We did not reach this limit of,
perhaps, 80 MEs, because we restricted our step size in view
of computing time, which for the smallest time steps peaked
already at several days for 1000 trajectories on a IBM R6000/
59H workstation.

(3) If a calculation involves many thousands of trajectories,
and the final results are statistical averages, one may of course
argue that the errors of single trajectories will be compensated
for in the ensemble. This argument is sometimes based on the
“shadow theorem”,24,25 which states that in chaotic dynamics
through any sequence of points lying on an approximate
trajectory there exists an exact trajectory of the dynamics
through these same points. But this theorem is nonconstructive,
and it is unclear and, in practice, impossible to check how far

Figure 2. Average final deviations of the total angular momentum
(in units of p) of all trajectories as function of the expense, i.e., the
number of integration substeps per 10 fs. Integrators:O, G; +, S4,×,
S6. The upper curves are for DP; the lower ones for QP. The straight
parts have approximate powers of 1,-5, and 1 for S4, G, and S6,
respectively.
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the assumptions made in the proof of the theorem hold in a
system like ours.

We have tried to shed some light on this “averaging postulate”
by looking into a possible dependence on the step size of some

ensemble property of our calculations. As a simple example,
for which we can get fair statistics, we took the ratio,r, of even
and odd MEs. For large step sizes (n ) 5 and 6) we find,
indeed, somer which are different by about 3σ from the
converged (but still fluctuating) limit for small step sizes. Much
larger samples are needed to make this test a stringent one.

(4) Finally, one might say that discussing the correctness of
single trajectories in molecular dynamics looks a bit “academic”.
In principle, we should, of course, use quantum mechanics.
However, computational problems force us to use classical

TABLE 1: Percentage of Correctly Computed Trajectories of Length Groups Measured by the Number of Minimum
Exchanges,M (See Text), as a Function of the Substep Size 2-n × 10 fs with n ) 8...14 for Double andn ) 8...15 for Quadruple
Precisiona

DP QP

M group 8 9 10 11 12 13 14 8 9 10 11 12 13 14 15

0-9 97 99 99 100 100 100 100 97 99 99 100 100 100 100 100
99 100 100 100 100 100 100 99 100 100 100 100 100 100 100
97 99 99 100 100 100 100 97 99 99 100 100 100 100 100

10-19 94 96 98 98 99 100 100 94 96 98 98 99 100 100 100
97 98 99 100 100 100 100 97 98 99 100 100 100 100 100
90 95 97 98 99 100 100 90 95 97 98 99 100 100 100

20-29 93 94 96 99 100 100 100 93 94 96 99 100 100 100 100
90 96 100 100 100 100 100 90 96 100 100 100 100 100 100
70 86 90 98 99 100 100 70 86 90 98 99 100 100 100

30-39 67 90 98 97 98 97 98 67 90 98 100 100 100 100 100
57 77 92 97 95 96 95 57 77 92 97 100 100 100 100
23 46 62 79 90 95 97 23 46 62 79 90 95 99 100

40-49 31 57 83 88 91 85 83 32 57 82 92 96 99 99 100
20 38 70 81 81 75 77 20 38 71 83 94 93 93 93
6 8 25 39 62 77 81 6 8 25 39 63 77 88 94

50-59 9 33 69 73 70 70 66 9 32 67 82 95 96 100 100
6 17 37 59 65 58 57 4 18 37 67 79 85 86 86
2 2 7 15 35 59 66 2 2 6 15 36 56 72 84

60-69 5 15 37 45 46 42 37 5 17 43 71 88 97 99 100
5 6 18 37 28 32 30 4 8 17 39 60 75 77 76
4 5 2 10 19 27 37 5 5 3 10 18 36 55 75

70-79 4 7 26 35 25 21 31 4 8 30 57 73 87 95 100
5 1 12 20 20 13 14 2 4 10 24 44 51 52 51
2 0 5 4 8 20 27 2 1 2 6 10 19 35 56

80-89 0 11 13 16 16 18 13 0 11 8 39 63 100 100 100
0 3 5 13 16 8 8 3 3 8 16 24 42 39 37
0 0 3 3 8 13 13 3 3 3 3 3 8 21 45

a Note that the number of substeps determines the expense. Upper rows, S6; middle rows, G; lower rows, S4. For simplicity, the number of
substeps per step has been approximated here as 8, 4, 2 instead of 9, 5, 2 for S6, S4, and G, respectively.

Figure 3. Average error of the end points (measured as the Euclidean
distance in phase space from the optimally integrated trajectories) as a
function of the number of MEs (approximately proportional to the length
of the trajectory) for the sixth order symplectic integrator S6. TheM
numbers are binned into sets of width 5. From top to bottom the curves
correspond to substep sizes of 2-n × 10 fs withn ) 7...13, computed
in DP (s) or QP (--). The two upmost curves for QP and DP coincide.
Relative errors are approximately one-tenth of those plotted.

Figure 4. Same as Figure 3 for the Gear integrator G.
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mechanics in many cases. But then it is easy to find physical
problems for which it is important to know whether asmall
number of long trajectoriesis correct or not. One such case is
the determination of a cross-section for a rarely populated
channel. Another is the question of whether the classical
unimolecular decay of a microcanonically activated molecule
is exponential with a single exponent or not (cf. ref 19). Again,
the answer is completely determined by the small numbers of
very long-lived trajectories. We may add that these problems
are also still far from treatable by quantum calculations.

Concluding, we have verified that a new, sixth order
symplectic integrating routine can make the computation of
classical trajectories simulating complex scattering or uni-
molecular decay, much faster than using traditional ones. In
addition, this study shows also how careful one must be in
assuming trajectories to be correctly computed in chaotic
systems.
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